The QCD critical point

Saumen Datta, Rajiv Gavai, Sourendu Gupta

ILGTI, TIFR Mumbai

6 August, 2013 XQCD 2013, Bern, Swaziland

3 Critical behaviour

Introduction	QNS	Criticality	Summary

3 Critical behaviour

EOS at $\mu \neq 0$

Gavai, SG: Phys.Rev. D68 (2003) 034506

$$\Delta P = P(\mu, T) - P(0, T).$$

Introduction	QNS	Criticality	Summary
The mathematical	problem		

Perform a series expansion of the pressure in powers of chemical potential

$$\Delta P(\mu_u, \mu_d, T) = \sum_{m,n} \chi_{m,n}(T) \frac{\mu_u^m \mu_d^n}{m! n!}.$$

Does this converge? Can one reconstruct the function? Well studied classical problem. Special complications: few coefficients known, with errors.

Simplest part of the problem: estimate whether the series is summable, radius of convergence and location of nearest singularity. Next more complicated: estimating value of the function, nature of divergence.

Introduction	QNS	Criticality	Summary
The mathematic	cal problem		

Perform a series expansion of the pressure in powers of chemical potential

$$\Delta P(\mu_u, \mu_d, T) = \sum_{m,n} \chi_{m,n}(T) \frac{\mu_u^m \mu_d^n}{m! n!}.$$

Does this converge? Can one reconstruct the function? Well studied classical problem. Special complications: few coefficients known, with errors.

Simplest part of the problem: estimate whether the series is summable, radius of convergence and location of nearest singularity. Next more complicated: estimating value of the function, nature of divergence.

ILGTI

Also, expansion in $z = \mu_B/T$

$$\chi_B(\mu_B, T) = \frac{\partial^2 \Delta P}{\partial \mu_B^2} = \chi_B^0(T) + \frac{T^2}{2!} \chi_B^2(T) z^2 + \frac{T^4}{4!} \chi_B^4(T) z^4 + \cdots$$

Lattice simulations with $N_f = 2$ staggered quarks and Wilson action. Used $N_t = 8$, 6 and 4; $m_\pi \simeq 0.3 m_\rho$ MeV; spatial size L = 4/T.

Temperature scale, T_c , found by the point at which χ_L peaks. If $T_c \simeq 170$ MeV, then 1/a = 1.36 GeV.

Configurations: 50K+ at each coupling; large number of fermion sources used for determination of fermion traces.

Partial statistics reported in: Datta, Gavai, SG: arXiv:1210.6784

1 Introduction

2 The susceptibilities

3 Critical behaviour

QNS	Criticality	

Numerical errors

Errors depend on number of fermion sources for evaluation of propagator as well as number of gauge configurations. Multiple fermion loops are source hungry.

QNS	Criticality	Summary

Numerical errors

Errors depend on number of fermion sources for evaluation of propagator as well as number of gauge configurations. Multiple fermion loops are source hungry.

	QNS	Criticality	Summary
Susceptibilities at p	u = 0		

	QNS	Criticality	Summary
Susceptibilities at μ	$\iota = 0$		

ILGTI The QCD critical point

	QNS	Criticality	Summary
Lattice spacin	g effects		

QNS	Criticality	Summary

Nearing continuum physics

Continuum: $T_c = 170$ MeV; p4 with $N_t = 8$: $T_c = 180$ MeV. HTL, DR: Andersen etal, 1307.8098; NLO: Haque etal, 1302.3228; HotQCD: Petreczky, Lattice 2013

QNS	Criticality	Summary

Nearing continuum physics

Continuum: $T_c = 170$ MeV; p4 with $N_t = 8$: $T_c = 180$ MeV. HTL, DR: Andersen etal, 1307.8098; NLO: Haque etal, 1302.3228; HotQCD: Petreczky, Lattice 2013

	QNS	Criticality	Summary
The radius of cor	ivergence		

For $N_t=6,~\mu_E/T_E=1.7\pm0.1$ Gavai, SG: 2008

1 Introduction

3 Critical behaviour

QNS

Criticality

Must resum a series expansion

Truncated series sum is regular even at the radius of convergence, so is missing something important.

Critical behaviour of m_1

If $\chi_B(z) \simeq (z_* - z)^{-\psi}$, then $m_1 = d \log \chi_B/dz$ has a pole. Series expansion of χ_B gives series for m_1 . Resum series into a Padé approximant:

$$[0,1]:$$
 $m_1(z) = \frac{c}{z_* - z}$

Width of the critical region? If we define it by

$$\left.\frac{m_1(z)}{m_1(0)}\right| > \Lambda,$$

then $|z - z_*| \le z_*/\Lambda$. Errors in extrapolation? We have

$$\left|\frac{\Delta m_1}{m_1}\right| > \frac{1}{1-\Lambda\delta},$$

where δ is fractional error in z_* .

	QNS	Criticality	Summary
Critical slowing	g down		

-0.5

0.1 μ/T

	QNS	Criticality	Summary
The DLOG Pade			

At a critical point

$$\chi_B = \frac{\partial^2 (P/T^4)}{\partial z^2} \simeq (z_*^2 - z^2)^{-\psi}.$$

Continuity and finiteness of P at the CEP forces $\psi \leq 1$.

Since

$$m_1(z) = rac{d\log\chi_B}{dz} \simeq rac{2\psi z}{z_*^2 - z^2},$$

use the series to estimate the critical exponent. Series for m_1 has one term less than series for χ_B .

Accurate results require fine statistical control of at least 3 series coefficients of χ_B : 2 of m_1 .

Widom scaling for the order parameter gives

$$|\Delta \mu| = |\Delta n|^{\delta} J\left(rac{|\Delta T|}{|\Delta n|^{1/eta}}
ight),$$

where $\Delta T = T - T_E$ and $\Delta \mu = \mu - \mu_E$. For $\Delta T = 0$ one finds $\Delta n \propto |\Delta \mu|^{1/\delta}$ in the high density phase. Then clearly one has

$$\psi = 1 - \frac{1}{\delta}.$$

For the 3d Ising model, $\delta = 1.49$, so $\psi = 0.79$. Since the identification of the two scaling directions is arbitrary, one can vary these. This gives $0.79 \le \psi \le 1$.

In mean field theory one has $\delta=$ 3, so 0.66 $\leq\psi\leq$ 1. The data cannot yet distinguish between these cases.

	QNS	Criticality	Summary

Testing the DLOG Pade

Test resummation by using 3rd term of m_1 .

ILGTI The QCD critical point

Introduction	QNS	Criticality	Summary
Critical exponent			

Large errors in ψ , but $\psi < 1$ as expected from continuity of pressure. Ising prediction: $\psi \ge 0.79$.

ILGTI The QCD critical point

	QNS	Criticality	Summary
The pressure			

1 Introduction

2 The susceptibilities

3 Critical behaviour

